

IOPscience

Home Search Collections Journals About Contact us My IOPscience

 61 Cu(61 Ni) emission Mossbauer study of hyperfine interactions in copper-based oxides

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1995 J. Phys.: Condens. Matter 7 2339 (http://iopscience.iop.org/0953-8984/7/11/012)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.179 The article was downloaded on 13/05/2010 at 12:47

Please note that terms and conditions apply.

⁶¹Cu(⁶¹Ni) emission Mössbauer study of hyperfine interactions in copper-based oxides

F S Nasredinov, P P Seregin, V F Masterov, N P Seregin, O A Prikhodko and M A Sagatov

St Petersburg State Technical University, 195251, St Petersburg, Russia

Received 30 September 1994

Abstract. Simple (CuO₂, CuO) and complex superconducting (YBa₂Cu₃O_{7-x}, La_{2-x}Sr_xCuO₄) copper oxides have been investigated by 61 Cu(61 Ni) emission Mössbauer spectroscopy. A linear relationship between the quadrupole coupling constant for 61 Ni and the calculated lattice electric field gradients is established, and the contribution of the Ni²⁺ valence electrons to the coupling constant is determined. Magnetic fields are observed at 61 Ni nuclei in those cases when the copper sublattice shows magnetic ordering.

1. Introduction

Mössbauer spectroscopy with various isotopes (⁵⁷Fe, ¹¹⁹Sn, ¹⁵¹Eu, ¹⁵⁵Gd, ¹⁶¹Dy, ¹⁷⁰Yb) has been widely used for investigating copper based HTSCs. Such investigations are of particular interest in those cases when the Mössbauer probe resides at the copper sites. For this reason we have developed and applied to $YBa_2Cu_3O_{7-x}$ [1] and $La_{2-x}Sr_xCuO_4$ [3] ${}^{67}Cu({}^{67}Zn)$ emission Mössbauer spectroscopy. In this technique the ${}^{67}Zn^{2+}$ probe is produced at a copper site by decay of a ⁶⁷Cu parent nucleus, and the nuclear and atomic parameters of the probe allow one to determine all the parameters of the tensor of the electric field gradient (EFG) created at the copper sites by the lattice ions. However, ⁶⁷Zn Mössbauer spectra could not be observed for sites with magnetic ordering because of certain technical obstacles. To investigate the combined magnetic and electric quadrupole interactions of the nuclei at the copper sites of the HTSC lattices we have proposed ⁶¹Cu(⁶¹Ni) emission Mössbauer spectroscopy [3]. In this case the ⁶¹Ni²⁺ Mössbauer probe produced by decay of ⁶¹Cu also occupies a copper site. In addition, the nuclear and atomic parameters of the probe are suitable for both the magnetic and electric quadrupole interactions to be observed. The present paper reports 61 Cu(61 Ni) emission Mössbauer data for typical HTSCs, YBa₂Cu₃O_{7-r} and La_{2-r}Sr_xCuO₄, as well as for simple copper oxides, Cu₂O and CuO.

2. Experimental details

Ceramic samples of YBa₂Cu₃O_{7-x} (x = 0 or 1) and La_{2-x}Sr_xCuO₄ (x = 0 or 0.15) were prepared by sintering the corresponding oxides. The homogeneity of the samples was controlled by x-ray diffraction. T_c values of 91 and 40 K were found for YBa₂Cu₃O₇ and La_{1.85}Sr_{0.15}CuO₄, respectively. Cu₂O and CuO samples were prepared by decomposing cupric nitrate in air. The ⁶¹Cu isotope was produced by the ⁶¹Ni(p,n)⁶¹Cu reaction followed by chromatographic isolation of a carrier-free ⁵⁷CuCl₂ preparation. Radioactive copper was introduced into YBa₂Cu₃O_{7-x} or La_{2-x}Sr_xCuO₄ samples by thermal diffusion, which ensures that the radioactive copper atoms occupy regular copper sites [4]. The doping of Cu₂O and CuO with radioactive copper was effected through the starting copper nitrate.

The Mössbauer spectra were recorded on a commercial spectrometer at 80 K. The $Ni_{0.86}V_{0.14}$ alloy with a surface density of 1500 mg cm⁻² was used as a standard absorber. Each spectrum was, as a rule, recorded on four to six samples.

3. Experimental results and discussion

As reported earlier [5], the appearance of an isomer shift in ⁶¹Ni Mössbauer spectra is unlikely. Experimental spectra may reveal only the effects of electric quadrupole and Zeeman interactions of the ⁶¹Ni nuclei with local fields. A purely quadrupole interaction splits the ground and excited levels of ⁶¹Ni nuclei into two and three sublevels, respectively, so that the Mössbauer spectrum is a superposition of five lines whose intensities relate as 10:4:1:6:9. A purely Zeeman interaction splits the Mössbauer spectrum into 12 symmetrical lines whose intensities relate as 10:4:1:6:6:3:3:6:6:1:4:10. In the case of combined hyperfine interaction the eigenvalues of the Hamiltonian for an axially symmetrical EFG tensor and $eQU_{zz} \ll gH$ are given by

$$E_m^I = mgH + \frac{eQU_{zz}}{4I(2I-1)}[3m^2 - I(I+1)]\frac{3\cos^2\theta - 1}{2}$$
(1)

where H and U_{zz} are the magnetic field and the principal component of the EFG tensor (both at the nucleus), θ is the angle between the direction of the magnetic field and the z-axis of the EFG tensor, m is the magnetic quantum number; I and Q are the spin and the quadrupole moment of the nucleus, respectively, and g is the gyromagnetic ratio. For ⁶¹Ni the last three quantities are: $I_0 = \frac{3}{2}$, $Q_0 = 0.162$ b, $g_0 = -0.701$ mm s⁻¹ T⁻¹ in the ground state and $I_e = \frac{5}{2}$, $Q_e = -0.2$ b, $g_e = 0.0268$ mm s⁻¹ T⁻¹ in the excited state [6]. The quadrupole coupling constants given below relate to the ground state of ⁶¹Ni.

Spectra of simple copper oxides, Cu₂O and CuO, are of particular interest for substantiating the potentialities of ${}^{61}Cu({}^{61}Ni)$ emission Mössbauer spectroscopy in studying copper-based HTSCs. In both the oxides copper atoms occupy only one crystallographic position, the symmetry of the copper environment being non-cubic, and, therefore, appearance of quadrupole splitting in the spectra is to be expected. However, as figure 1(*a*) shows, the ${}^{61}Cu_2O$ spectrum is a somewhat broadened singlet for which only the upper limit for the quadrupole coupling constant, $|eQ_0U_{zz}| < 30$ MHz, could be found. For Ni²⁺ ions the EFG at ${}^{61}Ni$ nuclei is created by lattice ions (lattice EFG), as well as by the non-spherical valence shell of the Ni²⁺ ions themselves (valence EFG), so that

$$U_{zz} = (1 - \gamma) V_{zz} + (1 - R_0) W_{zz}$$
⁽²⁾

where U_{zz} , V_{zz} , W_{zz} are the principal components of the total, lattice and valence EFGs, respectively; γ and R_0 are the Sternheimer factors for Ni²⁺. The lattice EFG tensor may be calculated in the point charge approximation, and calculations for the Cu₂⁺O²⁻ model, carried out with the use of x-ray data [7], give $V_{zz} = -1.09$ e Å⁻³ at the copper sites. For $\gamma = -7.92$ [8] the above value of V_{zz} results in $eQ_0V_{zz}(1 - \gamma) = -55$ MHz, which

Figure 1. ${}^{61}Cu({}^{61}Ni)$ emission Mössbauer spectra of (a) Cu₂O and (b) CuO. The positions of the components of (a) the quadrupole and (b) Zeeman multiplets are shown.

Figure 2. ⁶¹Cu(⁶¹Ni) emission Mössbauer spectra of (a) La_{1.85}Sr_{0.15}CuO₄ and (b) La₂CuO₄ ceramic samples. The positions of the components of (a) the quadrupole and (b) Zeeman multiplets are shown.

much exceeds the experimental value. This discrepancy is obviously caused by the valence contribution to the EFG for Ni²⁺ ions. If the terms $(1 - \gamma)V_{zz}$ and $(1 - R_0)$ in equation (2) are nearly equal in magnitude and opposite in sign, then these contributions compensate each other, and the total EFG is substantially decreased.

Such compensation is not so effective for the CuO matrix, as indicated by the spectrum in figure 1(b) for which $eQ_0U_{zz} = -43 \pm 2$ MHz, whereas calculation of the EFG for the Cu²⁺O²⁻ model with the use of x-ray data [9] gives $eQ_0V_{zz}(1 - \gamma) = 37$ MHz. This means that the valence contribution of Ni²⁺ to the total EFG may be estimated as $eQ_0W_{zz}(1-R_0) = -80$ MHz. The spectrum in figure 1(b) reflects the combined magnetic and electric quadrupole interaction of ⁶¹Ni with the local fields in accordance with the antiferromagnetism exhibited by CuO below 230 K. The fine structure of the spectrum corresponds to an effective magnetic field $H = 11.5 \pm 0.5$ T; the eQ_0U_{zz} value is estimated for $\theta = 0^\circ$ (according to [10], $\theta < 10^\circ$).

Copper atoms occupy in the La_{2-x}Sr_xCuO₄ lattice only one crystallographic position with a non-cubic environment. At x < 0.08 the copper sublattice shows antiferromagnetic ordering with the highest Néel temperature $T_N = 250$ K at x = 0 [10]. The ⁶¹Cu(⁶¹Ni)</sup> emission Mössbauer spectrum of a superconducting La_{1.85}Sr_{0.15}CuO₄ sample (figure 2(*a*)) is a poorly resolved quadrupole multiplet with $eQ_0U_{zz} = -50 \pm 2$ MHz, whereas that of a non-superconducting La₂CuO₄ sample (figure 2(*b*)) shows combined hyperfine interaction ($H = 8.5 \pm 0.5$ T and $eQ_0U_{zz} = -45 \pm 2$ MHz if $\theta = 80^\circ$ is assumed, according to [10]). These results show that the EFG at the copper sites does not change considerably in going from La₂CuO₄ to La_{1.85}Sr_{0.15}CuO₄, which is in good agreement with ⁶³Cu NMR data for La_{2-x}Sr_xCuO₄ [10, 11], as well as with our calculations of the

lattice EFG resulting in V_{zz} values of 0.588 and 0.604 e Å⁻³ for the La³⁺Cu²⁺O²⁻ and La³⁺_{1.85}Sr²⁺_{0.15}Cu²⁺O(1)²⁻₂O(2)^{1.925-} models, respectively. These calculations used structural data of [12] and a charge distribution proposed in [2]. Here, O(1) and O(2) denote the oxygen ions lying in the La(Sr)-O and Cu-O planes, respectively.

When the material under investigation has more than one structural state of copper, the interpretation of experimental spectra becomes complicated, since the spectra are, as a rule, unresolved. However, determination of parameters of both the magnetic and quadrupole interactions is possible in this case, too. A typical example is YBa₂Cu₃O_{7-x} where copper occupies two positions, Cu(1) and Cu(2), whose populations relate as 1:2. The ⁶¹Cu(⁶¹Ni) emission Mössbauer spectrum of superconducting YBa₂Cu₃O₇ ceramics (figure 3(*a*)) is a superposition of two quadrupole multiplets with eQ_0U_{zz} values of -54 ± 2 and -35 ± 2 MHz. Their relative intensities indicate that these multiplets should be assigned to Ni²⁺ at the Cu(1) and Cu(2) sites, respectively. In non-superconducting YBa₂Cu₃O₆ the Cu(⁶¹Ni) emission Mössbauer spectrum of this ceramic (figure 3(*b*)) is to be considered as a superposition of two components corresponding to the Cu(2) and Cu(1) sites, respectively, a singlet with $|eQ_0U_{zz}| < 20$ MHz and a magnetic multiplet with $H = 8.5 \pm 0.5$ T and $eQ_0U_{zz} = -48 \pm 2$ MHz; here $\theta = 90^\circ$ is assumed for Cu(2), according to [16].

Figure 3. ${}^{61}Cu({}^{61}Ni)$ emission Mössbauer spectra of (a) YBa₂Cu₃O₇ and (b) YBa₂Cu₃O₆. Two quadrupole multiplets corresponding to ${}^{61}Ni^{2+}$ at the Cu(1) and Cu(2) sites are shown in spectrum (a). The Zeeman multiplet from the Cu(2) sites and the singlet from the Cu(1) sites are shown in spectrum (b).

The parameters of the above spectra and the results of calculations of the lattice EFG tensor are presented in figure 4(*a*) as a plot of $|eQ_0U_{zz}|$ against $|V_{zz}|$. The EFG calculation procedure for Cu₂O, CuO and La_{2-x}Sr_xCuO₄ is described above. The EFG tensor was calculated for the Y³⁺Ba₂^{2.06+}Cu(1)^{1.96+}Cu(2)₂^{2.01+}O(1)₂^{2.13-}O(2)₂^{1.95-}O(3)₂^{1.84-}O(4)^{1.26-}

model (here O(1) is the apical oxygen, O(2) and O(3) are the plane oxygens, O(4) is the chain oxygen) with the use of structural data [14] and of a charge distribution with a hole at O(4), proposed in [14], to give V_{zz} values of 0.949 and 0.566 for the Cu(1) and Cu(2) sites, respectively. Similar calculations for YBa₂Cu₃O₆ using structural data of [16] and a simple charge distribution model, Y³⁺Ba₂²⁺Cu(1)⁺Cu(2)₂²⁺O₆²⁻ [1], give $V_{zz} = -1.253$ and 0.666 e Å⁻³ for the Cu(1) and Cu(2) sites, respectively.

Figure 4(*a*) shows that the data presented are satisfactorily fitted by a straight line. Most points in figure 4(*a*) correspond to $eQ_0U_{zz} < 0$ and $V_{zz} > 0$. For these points the plot $|C_{Ni}|$ against $|V_{zz}|$ is equivalent to the plot in the natural axis (eQ_0U_{zz}) against V_{zz} which is clearly explained with equation (2). But the points 1 and 7 having large negative V_{zz} value and small eQ_0U_{zz} values with uncertain signs are close to the straight line, too. This means that such a choice of axes places the points from the opposite quadrant in the natural axes at the main plot. Thus, the C_{Ni} against $|V_{zz}|$ plot demonstrates more clearly a common kind of dependence of the quadrupole coupling constant on the lattice EFG for both positive and negative V_{zz} values. According to equation (2) the observed linear dependence points to a constant valence contribution $|eQ_0(1 - R_0)W_{zz}|_{Ni}$ to the quadrupole coupling constant. An extrapolation of the straight line to $V_{zz} = 0$ gives $|(1 - R_0)eQ_0W_{zz}|_{Ni} = 78 \pm 10$ MHz. The negative slope of the straight line evidences opposite signs of the valence and lattice contributions to the EFG. The value of the slope, 56 MHz e^{-1} Å³, allows one to find the Ni⁺² Sternheimer factor, $\gamma = -9 \pm 1$, which is quite close to the calculated value $\gamma = -7.92$ [8].

The same valence EFG for all the Ni states studied is somewhat surprising since the environment of the Ni⁺² ions varies considerably. It is especially surprising that the positive $(1 - R_0)eQ_0W_{zz}$ value for Ni⁺² in Cu₂O and in Cu(1) sites of YBa₂Cu₃O₆ (points 1 and 7, respectively) and the negative one for Ni⁺² in the other matrices have the same magnitudes. There is no clear explanation for this coincidence but it should be marked.

Figure 4. (a) $|C_{(Ni)}|$ against $|V_{zz}|$ and (b) $|C_{(Ni)}|$ against $|C_{(Zn)}|$ plots for various matrices: Cu₂O (1); CuO (2); La₂CuO₄ (3); La_{1.85}Sr_{0.15}CuO₄ (4); Cu(1) in YBa₂Cu₃O₇ (5); Cu(2) in YBa₂Cu₃O₇ (6); Cu(1) in YBa₂Cu₃O₆ (7) and Cu(2) in YBa₂Cu₃O₆ (8).

Figure 4(b) shows a correlation between the quadrupole coupling constants $|C_{\text{Ni}}| = |eQ_0U_{zz}|_{\text{Ni}}$ and $|C_{\text{Zn}}| = |eQU_{zz}|_{\text{Zn}}$ derived from the ⁶¹Cu(⁶¹Ni) and ⁶⁷Cu(⁶⁷Zn) Mössbauer spectra, respectively. This plot is similar to that in figure 4(a) because $(eQU_{zz})_{\text{Zn}} \sim V_{zz}$

as shown in [1-4, 15]. The reasons for plotting $|eQ_0U_{zz}|_{Ni}$ against $|eQU_{zz}|_{Zn}$ rather than $(eQ_0U_{zz})_{Ni}$ against $(eQU_{zz})_{Zn}$ are the same as for figure 4(a).

While the number of experimental points in figure 4(b) is less than that in figure 4(a), as ${}^{67}Cu({}^{67}Zn)$ data are scarce, figure 4(b) involves no ambiguity in choosing a model for calculating V_{zz} . An extrapolation of the straight line in figure 4(b) to $|C_{Zn}| = 0$ gives $|(1-R_0)eQ_0W_{zz}|_{Ni} = 80\pm12$ MHz, which coincides with the value derived from figure 4(a) within error. The slope of the plot in figure 4(b) also evidences the opposite signs of $(1-R_0)eQ_0W_{zz}$ and $(1-\gamma)eQ_0V_{zz}$.

4. Conclusions

We have considered the use of the ${}^{61}Cu({}^{61}Ni)$ isotope as a Mössbauer probe for studying hyperfine interactions at copper sites of the HTSC lattices. Like other Mössbauer probes, this one allows the EFG tensor parameters at the Cu sites to be determined. In contrast to ${}^{67}Zn^{2+}$, the ${}^{61}Ni^{2+}$ probe shows a considerable valence contribution to the EFG. A correlation has been found between the ${}^{61}Ni$ quadrupole coupling constant and the lattice EFG at Cu sites. The valence contribution to the ${}^{61}Ni$ coupling constant has been determined. The magnetic fields at the Cu sites of the HTSC and related materials have been shown to be detectable by ${}^{61}Cu({}^{61}Ni)$ emission Mössbauer spectroscopy.

Acknowledgment

This work was supported by the Russian Scientific Council on High-Temperature Superconductivity, grant No 91139 'Resonance'.

References

- [1] Seregin N P, Nasredinov F S, Masterov V F and Daribaeva G T 1991 Supercond. Sci. Technol. 4 263
- [2] Seregin N P, Masterov V F, Nasredinov F S, Saidov Ch S and Seregin P P 1992 Supercond. Sci. Technol. 5 675
- [3] Masterov V F, Nasredinov F S, Saidov Ch S, Seregin P P, Bondarevskiy S I and Shchrbatyuk O K 1992 Superconductivity (KIAE) 5 1339
- [4] Masterov V F, Nasredinov F S, Saidov Ch S, Seregin P P and Shchrbatyuk O K 1992 Sov. Phys.-Solid State 34 1228
- [5] Love J C, Obenshain F E and Czjzek G 1971 Phys. Rev. B 3 2837
- [6] Mössbauer Effect Data Center Information Services and Activities 1985 (Carolina: University of Nortz) p 40
- [7] Wells A F 1984 Structural Inorganic Chemistry 5th edn (Oxford: Clarendon) p 1120
- [8] Gupta R P and Sen S K 1973 Phys. Rev. 8 1169
- [9] Asbrink S and Narrby L J 1970 Acta Crystallogr. B 26 8
- [10] Tsudo T, Shimizu T, Yasuoka H, Kishio K and Kitazawa K 1988 J. Phys. Soc. Japan 57 2908
- [11] Ohsugi S, Kitaoka Y, Ishida K and Asayama K J. Phys. Soc. Japan 60 2351
- [12] Tarascon J M, Grene L H, McKinnen W R, Hull G W and Geballe T H 1987 Science 235 1373
- [13] Yasuoka H, Shimizu T, Imai T, Sasaki S, Ueda Y and Kosuge K 1989 Hyperfine Interact. 49 167
- [14] Francois M, Jund A, Yvon K, Hewat A W, Capponi J J, Strobel P, Marezio M and Fischer P 1988 Solid State Commun. 66 1117
- [15] Masterov V F, Nasredinov F S, Seregin N P and Seregin P P 1992 Superconductivity (KIAE) 5 1830
- [16] Yvon K and Francois M 1989 Z. Phys. B 76 413